Fuzzy TSMCSPO for Trajectory Tracking of Nuclear Reactor Dismantlement Robot Manipulator
نویسندگان
چکیده
In this study, a fuzzy logic system to tune the parameters of terminal sliding mode control with perturbation observer (TSMCSPO) in real-time is proposed according system’s state changes improve performance TSMCSPO for 5-DOF robot manipulator used nuclear reactor dismantlement. Accurate trajectory tracking required when using multi-DOF cut decommissioned reactor. A scheme TSMC SPO has been previous research, which improves estimation and convergence traditional SMCSPO. TSMCSPO, controller are important enhance performance. Moreover, due influence working environment uncertainty system, characteristics will be changed during multi-degree-of-freedom manipulator. Therefore, optimal parameter tuning required. regard, an effective method. By designing rules, can optimized. algorithm and, simulation vessel internal (RVI) implemented MATLAB/Simulink environment. The verified by experiments on real platform. outstanding demonstrated comparing error between fixed parameters.
منابع مشابه
An Adaptive Fuzzy Controller for Trajectory Tracking of Robot Manipulator
In this paper, an adaptive fuzzy control algorithm is proposed for trajectory tracking of an n-DOF robot manipulator subjected to parametric uncertainty and it is advantageous compared to the conventional nonlinear saturation controller. The asymptotic stability of the proposed controller has been derived based on Lyapunaov energy function. The design procedure is straightforward due to its sim...
متن کاملTrajectory Tracking of a Mobile Robot Using Fuzzy Logic Tuned by Genetic Algorithm (TECHNICAL NOTE)
In recent years, soft computing methods, like fuzzy logic and neural networks have been presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot with a complicated kinematical model. After designing the fuzzy tracking controller, the membership functions an...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملA Novel Robust Adaptive Trajectory Tracking in Robot Manipulators
In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3253213